A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

نویسندگان

  • Ryszard Pawlak
  • Marcin Lebioda
  • Jacek Rymaszewski
  • Witold Szymanski
  • Lukasz Kolodziejczyk
  • Piotr Kula
چکیده

Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is graphene a good transparent electrode for photovoltaics and display applications?

The current standard material used for transparent electrodes in displays, touch screens and solar cells is indium tin oxide (ITO) which has low sheet resistance (10 Ω/□), high optical transmission in the visible wavelength (85%) and does not suffer of optical haze. However, ITO is mechanically rigid and incompatible with future demands for flexible applications. Graphene materials share many o...

متن کامل

Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

Flexible transparent electrodes (FTEs) with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO) served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transpa...

متن کامل

Energy-Autonomous, Flexible, and Transparent Tactile Skin

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim wileyonlinelibrary.com 1606287 (1 of 12) such as diabetes. To satisfy the requirements of such a system, active materials with intrinsic properties, including good mechanical, electrical, optical, and structural properties, are in high demand.[1] The development of suitable flexible pressure sensors for e-skin applicati...

متن کامل

Fabrication and investigation of a transparent and flexible loudspeaker and microphone based on carbon nanotube

Transparent acoustic sensors and actuators are a new generation of acoustic transducers that can create an evolution in the microphone and loudspeakers industries. These transducers with properties like transparency, flexibility, flatness, very low weight and thickness have a great potential for various applications like public speakers, active noise cancelation systems, displays, cell phones a...

متن کامل

Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016